首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1454篇
  免费   352篇
  国内免费   427篇
测绘学   2篇
大气科学   40篇
地球物理   211篇
地质学   1795篇
海洋学   83篇
天文学   9篇
综合类   32篇
自然地理   61篇
  2024年   7篇
  2023年   22篇
  2022年   38篇
  2021年   69篇
  2020年   59篇
  2019年   61篇
  2018年   70篇
  2017年   95篇
  2016年   104篇
  2015年   94篇
  2014年   108篇
  2013年   114篇
  2012年   87篇
  2011年   111篇
  2010年   64篇
  2009年   106篇
  2008年   97篇
  2007年   120篇
  2006年   111篇
  2005年   97篇
  2004年   73篇
  2003年   74篇
  2002年   77篇
  2001年   33篇
  2000年   52篇
  1999年   49篇
  1998年   24篇
  1997年   32篇
  1996年   35篇
  1995年   29篇
  1994年   30篇
  1993年   22篇
  1992年   13篇
  1991年   9篇
  1990年   14篇
  1989年   10篇
  1988年   5篇
  1987年   7篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1981年   1篇
  1980年   3篇
  1977年   1篇
  1954年   1篇
排序方式: 共有2233条查询结果,搜索用时 31 毫秒
21.
含煤层地质环境下地震波场的数值模拟   总被引:3,自引:2,他引:1  
本文对含低速煤层地质环境下弹性波场多波多分量地震资料进行了二维数值模拟研究,对人工边界反射进行了有效处理,频散效应得到了有效的压制,对几种不同激发与观测排列方式下的弹性波资料进行了模型计算与分析。  相似文献   
22.
To investigate the strength of frictional sliding and stability of mafic lower crust, we conducted experiments on oven-dried gabbro gouge of 1 mm thick sandwiched between country rock pieces (with gouge inclined 35° to the sample axis) at slip rates of 1.22 × 10− 3 mm/s and 1.22 × 10− 4 mm/s and elevated temperatures up to 615 °C. Special attention has been paid to whether transition from velocity weakening to velocity strengthening occurs due to the elevation of temperature.Two series of experiments were conducted with normal stresses of 200 MPa and 300 MPa, respectively. For both normal stresses, the friction strengths are comparable at least up to 510 °C, with no significant weakening effect of increasing temperature. Comparison of our results with Byerlee's rule on a strike slip fault with a specific temperature profile in the Zhangbei region of North China shows that the strength given by experiments are around that given by Byerlee's rule and a little greater in the high temperature range.At 200 MPa normal stress, the steady-state rate dependence a − b shows only positive values, probably still in the “run-in” process where velocity strengthening is a common feature. With a normal stress of 300 MPa, the values of steady-state rate dependence decreases systematically with increasing temperature, and stick-slip occurred at 615 °C. Considering the limited displacement, limited normal stress applied and the effect of normal stress for the temperatures above 420 °C, it is inferred here that velocity weakening may be the typical behaviour at higher normal stress for temperature above 420 °C and at least up to 615 °C, which covers most of the temperature range in the lower crust of geologically stable continental interior. For a dry mafic lower crust in cool continental interiors where frictional sliding prevails over plastic flow, unstable slip nucleation may occur to generate earthquakes.  相似文献   
23.
The genesis of Lower Eocene calcite-cemented columns, “pisoid”-covered structures and horizontal interbeds, clustered in dispersed outcrops in the Pobiti Kamani area (Varna, Bulgaria) is related to fossil processes of hydrocarbon migration. Field observations, petrography and stable isotope geochemistry of the cemented structures and associated early-diagenetic veins, revealed that varying seepage rates of a single, warm hydrocarbon-bearing fluid, probably ascending along active faults, controlled the type of structure formed and its geochemical signature. Slow seepage allowed methane to oxidize within the sediment under ambient seafloor conditions (δ18O = − 1 ± 0.5‰ V-PDB), explaining columns' depleted δ13C ratios of − 43‰. Increasing seepage rates caused methane to emanate into the water column (δ13C = − 8‰) and raised precipitation temperatures (δ18O = − 8‰). Calcite-cemented conduits formed and upward migrating fluids also affected interbed cementation. Even higher-energy fluid flow and temperatures likely controlled the formation of “pisoids”, whereby sediment was whirled up and cemented.  相似文献   
24.
New specimens of a fossil ostrich from the Miocene of Kenya   总被引:1,自引:0,他引:1  
Fossilised hind limb bones from the late Middle Miocene (approximately 14 million-year-old [MYA]) Fort Ternan, Kadianga West and Ngorora localities in Western Kenya indicate the presence of a new representative of the ostrich genus Struthio. These new fossils represent some of the oldest known records for Struthio yet described, slightly younger than Struthio coppensi, from the Lower Miocene of Namibia. Because the four sub-species of the modern-day ostrich (Struthio camelus camelus, Struthio camelus australis, Struthio camelus massaicus, and Struthio camelus molybdophanes) inhabit the plains of Africa, and as recently as the 1940s, a fifth sub-species was also present in the Middle East and Saudi Arabia (Struthio camelus syriacus), records of Struthio from Kenya and Namibia testify to the much wider distribution of these cursorial birds in the relatively recent past. This is further supported by the very high frequency of ostrich eggshell fragments found across Africa and Eurasia, which vastly outweighs the amount of skeletal material uncovered over the last century.  相似文献   
25.
The first discovery of dinosaur footprints on the Dalmatian part of the Adriatic-Dinaric carbonate platform (ADCP) is reported. They constitute the geologically youngest record of footprints on the ADCP. The trackbearing layer was formed in the intertidal environment and represents the final stage of a shallowing-upward cycle. Just below it, a heavy dinoturbated limestone layer can be observed. Microfacies analysis, incorporating evidence from benthic foraminifera and algae, indicates a Late Turonian–Early Coniacian age. The overall morphology and size of the footprints points to sauropod dinosaurs; they represent the largest forms recorded so far on the ADCP. This hints at a prolonged sauropod presence on the platform and to its Late Cretaceous connection to the continent rather than isolation.  相似文献   
26.
Marine microbial communities recorded in the Moroccan Anti‐Atlas were unaffected across the Neoproterozoic–Cambrian transition. A stromatolite‐dominated consortium was replaced at the beginning of the Atdabanian (ca 20 Myr after the Neoproterozoic–Cambrian boundary) by shelly metazoan and thromboid consortia, which contain the oldest biostratigraphically significant fossils of the Moroccan Cambrian. The associated collapse of microbial mat (stromatolitic) growth appears to coincide with a change from pre‐Atdabanian shallow‐water restricted conditions into Atdabanian deeper, open‐sea conditions. It is postulated that this environmental change led to an episode of improved water circulation over carbonate platform interiors, promoting shelly metazoan immigration into the region. The Tiout/Amouslek lithostratigraphic contact in the early Atdabanian marks the end of an episodically unstable seafloor as suggested by the abundance of slumping and sliding structures, and synsedimentary microfaults and cracks recorded in the underlying Tiout Member. Concurrent with the transition is the occurrence of a network of cryptic fissures and cavities that provided habitats for a coelobiontic chemosynthetic–heterotrophic microbial community composed of stromatolitic crusts, RenalcisEpiphytonGirvanella intergrowths, and Kundatia thalli. In the overlying Amouslek Formation, archaeocyathan–thromboid reefs were constrained by substrate stability, water depth and subsidence rate. Four reef geometries are distinguished: (i) patch reefs surrounded by shales, (ii) bioherms in which flank beds intercalate laterally with carbonate and shale inter‐reef sediments, (iii) biostromes or low‐relief structures formed as a result of lateral accretion of patch reefs, and (iv) kalyptrate complexes that nucleated because of a marked tendency for aggregation, and in which patch reefs and bioherms occur stacked together bounded by clay–marl–silt seams.  相似文献   
27.
Seismic lamination and anisotropy of the Lower Continental Crust   总被引:2,自引:3,他引:2  
Seismic lamination in the lower crust associated with marked anisotropy has been observed at various locations. Three of these locations were investigated by specially designed experiments in the near vertical and in the wide-angle range, that is the Urach and the Black Forrest area, both belonging to the Moldanubian, a collapsed Variscan terrane in southern Germany, and in the Donbas Basin, a rift inside the East European (Ukrainian) craton. In these three cases, a firm relationship between lower crust seismic lamination and anisotropy is found. There are more cases of lower-crustal lamination and anisotropy, e.g. from the Basin and Range province (western US) and from central Tibet, not revealed by seismic wide-angle measurements, but by teleseismic receiver function studies with a P–S conversion at the Moho. Other cases of lamination and anisotropy are from exhumed lower crustal rocks in Calabria (southern Italy), and Val Sesia and Val Strona (Ivrea area, Northern Italy). We demonstrate that rocks in the lower continental crust, apart from differing in composition, differ from the upper mantle both in terms of seismic lamination (observed in the near-vertical range) and in the type of anisotropy. Compared to upper mantle rocks exhibiting mainly orthorhombic symmetry, the symmetry of the rocks constituting the lower crust is either axial or orthorhombic and basically a result of preferred crystallographic orientation of major minerals (biotite, muscovite, hornblende). We argue that the generation of seismic lamination and anisotropy in the lower crust is a consequence of the same tectonic process, that is, ductile deformation in a warm and low-viscosity lower crust. This process takes place preferably in areas of extension. Heterogeneous rock units are formed that are generally felsic in composition, but that contain intercalations of mafic intrusions. The latter have acted as heat sources and provide the necessary seismic impedance contrasts. The observed seismic anisotropy is attributed to lattice preferred orientation (LPO) of major minerals, in particular of mica and hornblende, but also of olivine. A transversely isotropic symmetry system, such as expected for sub-horizontal layering, is found in only half of the field studies. Azimuthal anisotropy is encountered in the rest of the cases. This indicates differences in the horizontal components of tectonic strain, which finally give rise to differences in the evolution of the rock fabric.  相似文献   
28.
Avicennia pollen grains have been discovered in marine facies from the Middle Miocene deltaic series of Châteauredon (southeastern France). Based on the local stratigraphy, an age between 15.8 and 16.5 Ma is proposed for these grains. The age and the transgressive context of the Avicennia bearing-levels are in agreement with the maximum extension of the mangrove known in the western Mediterranean during interval N8–NN4 pro parte, in relation with the Langhian highstand. This mangrove occurrence at 42°N latitude during Middle Miocene is a more northern witness of the mangrove sites known in Languedoc and Provence areas. It also implies a lower climatic gradient than today. To cite this article: J.-J. Châteauneuf et al., C. R. Geoscience 338 (2006).  相似文献   
29.
Ion-microprobe U–Pb zircon dating of lower-crust metasedimentary granulite are reported on samples from two localities in Europe in order to determine (a) how this environment recorded the Variscan and eo-Alpine events, and (b) whether the transition between the two orogenic cycles was continuous or separated by a gap. The samples come from enclaves hosted by Miocene volcanoes at Bournac in the French Massif Central, and from the granulitic metasedimentary basement of the Alpine Santa Lucia nappe in Corsica, on the South European paleomargin of the Ligurian branch of the Tethys Sea. The zircon ages from Bournac range between 630 and 430 Ma and between 380 and 150 Ma with a major frequency peak at 285 Ma; the zircons older than 430 Ma are interpreted as detrital, whereas those younger than 380 Ma are considered to have formed by metamorphic processes after burial in the lower crust. Zircon ages from Santa Lucia range from to 356 to 157 Ma, with exception of one inherited Archean grain, and are interpreted like the younger Bournac zircons as having been formed by metamorphic processes.

In a granulite metamorphic environment, as opposed to an anatectic environment, new zircon growth can occur in the solid state. Once Zr has been incorporated into zircon, however, it is difficult to remobilize without dissolution; thus Zr available for new zircon growth must result from the breakdown of Zr-bearing minerals during prograde and/or retrograde events. In this light, the U–Pb zircon-age probability curves are interpreted as markers for major tectonometamorphic events, as suggested by the close correspondence between peaks in the curve and geological events recorded in the upper-crust, such as magma emplacement and basin subsidence.

Evidence of a tectonometamorphic gap between the Variscan and Alpine orogeneses is provided by the Santa Lucia zircon-age probability curve, which reveals a probable interlude during the Variscan–Alpine transition between 240 and 210 Ma. Here, the peak at 240 Ma is interpreted as the very beginning of crustal extension and the low at 210 Ma as a period of quiescence prior to the formation of an active margin and oceanization.  相似文献   

30.
Both adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province, eastern China are associated with Cretaceous Cu–Au mineralization. The Shaxi quartz diorite porphyrites exhibit adakite-like geochemical features, such as light rare earth element (LREE) enrichment, heavy REE (HREE) depletion, high Al2O3, MgO, Sr, Sr / Y and La / Yb values, and low Y and Yb contents. They have low εNd(t) values (− 3.46 to − 6.28) and high (87Sr / 86Sr)i ratios (0.7051–0.7057). Sensitive High-Resolution Ion Microprobe (SHRIMP) zircon analyses indicate a crystallization age of 136 ± 3 Ma for the adakitic rocks. Most volcanic rocks and the majority of monzonites and syenites in the Luzong area are K-rich (or shoshonitic) and were also produced during the Cretaceous (140–125 Ma). They are enriched in LREE and large-ion lithophile elements, and depleted in Ti, and Nb and Ba and exhibit relatively lower εNd(t) values ranging from − 4.65 to − 7.03 and relatively higher (87Sr / 86Sr)i ratios varying between 0.7057 and 0.7062. The shoshonitic and adakitic rocks in the Luzong area have similar Pb isotopic compositions (206Pb / 204Pb = 17.90–18.83, 207Pb / 204Pb = 15.45–15.62 and 208Pb / 204Pb = 38.07–38.80). Geological data from the Luzong area suggest that the Cretaceous igneous rocks are distributed along NE fault zones (e.g., Tanlu and Yangtze River fault zones) in eastern China and were likely formed in an extensional setting within the Yangtze Block. The Shaxi adakitic rocks were probably derived by the partial melting of delaminated lower crust at pressures equivalent to crustal thickness of > 50 km (i.e., 1.5 GPa), possibly leaving rutile-bearing eclogitic residue. The shoshonitic magmas, in contrast, originated mainly from an enriched mantle metasomatized by subducted oceanic sediments. They underwent early high-pressure (> 1.5 GPa) fractional crystallization at the boundary between thickened (> 50 km) lower crust and lithospheric mantle and late low-pressure (< 1.5 GPa) fractional crystallization in the shallow (< 50 km) crust. The adakitic and shoshonitic rocks appear to be linked to an intra-continental extensional setting where partial melting of enriched mantle and delaminated lower crust was probably controlled by lithospheric thinning and upwelling of hot asthenosphere along NE fault zones (e.g., Tanlu and Yangtze River fault zones) in eastern China. Both the shoshonitic and adakitic magmas were fertile with respect to Cu–Au mineralization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号